Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.10.483772

ABSTRACT

There is an outstanding need for broadly acting antiviral drugs to combat emerging viral diseases. Here, we report that thiopurines inhibit the replication of the betacoronaviruses HCoV-OC43 and SARS-CoV-2, and to a lesser extent, the alphacoronavirus HCoV-229E. 6-Thioguanine (6-TG) disrupted early stages of infection, limiting synthesis of full-length and subgenomic HCoV RNAs. Furthermore, consistent with our previous report on the effects of thiopurines on influenza A virus (IAV) glycoproteins, we observed that 6-TG inhibited accumulation of Spike glycoproteins from diverse HCoVs. Specifically, 6-TG treatment decreased the accumulation of Spike proteins and increased their electrophoretic mobility to match the properties of Spike following enzymatic removal of N-linked oligosaccharides with Peptide:N-glycosidase F (PNGaseF). SARS-CoV-2 virus-like particles (VLPs) harvested from 6-TG-treated cells were deficient in Spike. 6-TG treatment had a similar effect on lentiviruses pseudotyped with SARS-CoV-2 Spike; lentiviruses could be harvested from cell supernatants, but they were deficient in Spike and unable to infect human cells bearing ACE2 receptors. Together, these findings from complementary ectopic expression and infection models strongly indicate that defective Spike trafficking and processing is an outcome of 6-TG treatment. At low micromolar doses, the primary known mode of action of 6-TG is selective inhibition of the small GTPase Rac1. However, we show that selective chemical inhibitors of the small GTPases Rac1, CDC42 and Rho had no effect on Spike processing and accumulation, whereas the broad GTPase agonist ML099 was able to counter the effects of 6-TG, suggesting that an unknown GTPase could be the relevant 6-TG-target protein involved in regulating Spike processing and accumulation. Overall, these findings provide important clues about the mechanism of action of a candidate antiviral that can broadly target HCoVs and suggest that small GTPases may be promising targets for host-targeted antivirals.


Subject(s)
Severe Acute Respiratory Syndrome , Poult Enteritis Mortality Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL